design ideas

Circuit compensates optocoupler temperature coefficient

J Michael Zias, Acme Electric Corp, Cuba, NY

WHEN USING an optocoupler in a linear application, you should consider its gain drift with temperature. Traditional sin-gle- and dual-transistor-output devices have a notable gain drift with temperature. In recent years, some temperaturecompensated optocouplers have appeared. However, another option is to use two optocouplers or a dual optocoupler with appropriate feedback to make the drift of one device cancel the drift of the other. The circuit in Figure 1 accomplishes that task by using a differential amplifier with the drift treated as a com-mon-mode signal. In operation, it is in-

Figure 1

By using two optocouplers instead of one, you can cancel temperature-dependent gain drift. teresting to apply a dc signal to the input and use digital voltmeters to simultane-
ously monitor the output of each optocoupler and the differential amplifier. Apply a heat gun and observe the individual outputs change rapidly while the amplifier output moves

Figure 2

Circuit compensates optocouplertemperature coefficient93
Soft-start controller is gentle on loads 94Method offers fail-safevariable-reluctance sensors96
Circuit efficiently switchesbipolar LED.98
Circuit forms adjustablebipolar clamp100
Analog switch expands $R^{2} C$ interface 102
Circuit safely applies power to ICs 104
Simple circuit formspeak/clipping indicator104

Control-system feedback theory explains the operation of the circuit in Figure 1.
much more slowly. This result occurs even with optocouplers from different manufacturers. With optocouplers of the same type, you can observe good drift cancellation. Parts from the same manufacturer and dual devices give outstanding results. You can use individual optocouplers instead of dual devices to meet safety-agency spacing requirements.
To examine the method in control-system terms, consider Figure 2, which shows one amplifier, a, in the forward path and another amplifier, b, in the feedback path. Also consider the following equation:

$$
\mathrm{GAIN}=\mathrm{a} \frac{\mathrm{~A}}{1+\mathrm{Ab}}=\frac{\mathrm{a}}{\mathrm{~b}} \bullet \frac{1}{1+\frac{1}{\mathrm{Ab}}}
$$

where a / b is the ideal closed-loop gain and is multiplied by the loop-gain error term. Given that the error term is small (from the large gain A of the op amp), the gain of the system is seen as the ratio of the gains (current-transfer ratios) of the optocouplers. You can also easily find this same ratio by setting the voltages to the op-amp inputs equal. The input and output signals for this analysis are currents, which precision resistors translate to voltages. The optocouplers in this design are not particularly fast devices, so the phase delays could cause oscillation without a feedback capacitor. You choose its value empirically by applying a pulse at the input and observing the rise time and overshoot at the output.

Is this the best Design Idea in this issue? Vote at www.ednmag.com.

Soft-start controller is gentle on loads

Douglas Sudjian, Resonext Communications Inc, San Jose, CA

The control circuit in Figure 1 senses a given load and automatically soft-starts the load by synchronously adjusting the power to that load. You can also manually adjust the power delivered to the load by controlling the phase angle of the line voltage across the load. The phase-angle adjustment for every ac half cycle covers 0 to 180°. When the isolation transformer, T_{1}, senses the load current in the ac ground return,
IC_{1} 's output changes state, driving the signal diode, D_{5}, into and out of conduction. R_{6}, R_{7}, and C_{3} create a delay such that the voltage at Q_{6} 's gate decays slowly to allow for the load's switch-closure noise or missed ac cycles. Once Q_{6} turns off, the voltage at the base of Q_{2} rises to a higher reference level, which voltage divider R_{3} and R_{4} sets. The bias current of transistor pair Q_{2} and Q_{3} slowly passes through Q_{3} as the differential input volt-
age across Q_{2} and Q_{3} changes according to the time constant of R_{8} and C_{4}. The additional current that Q_{3} sources to C_{2} increases the voltage rate of change at pins 6 and 7 of $\mathrm{IC}_{2} . \mathrm{IC}_{2}$, a TLC555CP, is a lowpower timer configured as a monostable multivibrator.

In the monostable mode, the timer issues a positive pulse output every time a negative-going trigger pulse arrives at Pin 2 of IC_{2}. The output pulse width corre-

Figure 1

This soft-start circuit protects the load from large inrush currents.
sponds to the time it takes the voltage on capacitor C_{2} to ramp from 0 V to $2 / 3 \mathrm{~V}_{\mathrm{CC}}$. With a constant current essentially charging C_{2}, the charging is lin- \qquad Figure 2 ear, and the output at IC_{2} 's Pin 3 is proportional to the current set by R_{2}. The full-wave bridge, with D_{3} and D_{4} and filter capacitor C_{1}, forms a dc power supply for the timer/controller. The common cathode node for D_{1} and D_{2} pulls to ground via R_{1} every time the line voltage approaches $0 \mathrm{~V} . \mathrm{Q}_{1}$ turns on and supplies a negative-going trigger to Pin 2 of

Method offers fail-safe variable-reluctance sensors

Phil Levya, Maxim Integrated Products, Sunnyvale, CA

Variable-reluctance sensors are preferred for industrial and automotive environments, because they sustain mechanical vibration and operation to $300^{\circ} \mathrm{C}$. In most applications, they sense a steel target that is part of a rotating assembly. Because the unprocessed signal amplitude is proportional to target speed, a sensor whose signal-processing circuitry is designed for high speed ceases to function at some lower rate of rotation. Hall-effect sensors are preferable for speeds of several pulses per second, but they require the attachment of a magnet they require the attach
to the rotating assembly. They're thus prone to failure when the magnet is broken or damaged. Neither vari-able-reluctance nor Hall-effect sensors offers fail-safe detection of the processed signal in the event of failure in
the cable or sensor. The circuit in Figure 1 is a fail-safe variable-reluctance sensor for low- to medium-speed operation.

The circuit comprises $L_{1} ; R_{1}$; and a quad RS-422/RS-485 receiver, IC_{1}. It provides the complementary, independent output signals $\mathrm{V}_{\text {out }}$ and $\overline{\mathrm{V}_{\text {out }}}$. Table 1 lists the resulting fail-safe modes. The supply voltage can be $10 \mathrm{~V}, 12 \mathrm{~V}$, or the control system's 24 V -dc source. Coil L_{1} consists of 2600 turns of \#32 magnet wire wound on a $0.8-\mathrm{in}$. steel bar of $0.2-\mathrm{in}$. diameter, with 0.125 in. protruding from the sensor face. A magnet attached to the back of
the steel bar supplies the necessary magnetic flux. The rotating target causes a change in reluctance and, hence, a change in the amount of magnetic flux conducted. This change produces a corresponding change in the current induced in L_{1}. R_{1} converts the L_{1} current to a time-varying voltage. This voltage goes to the inputs of IC_{1}, whose input-voltage range of $\pm 25 \mathrm{~V}$, input threshold of $\pm 0.2 \mathrm{~V}$, and typical input hysteresis of 45 mV enable the VR sensor to operate at low speeds.

The separate, complementary outputs come from separate, ESD-protected in-

TABLE 1-FAIL-SAFE MODES (TWO CYCLES OF $\mathrm{V}_{\text {out }}$ OR $\overline{\mathrm{V}}_{\text {out }}$)

$\left(V_{\text {out }} \overline{V_{\text {out }}}\right)$	Mode
$(1,0)$ then $(0,1)$ or $(0,1)$ then $(1,0)$	Normal mode, both pulses valid
$(1,0)$ then $(0,0)$ or $(0,0)$ then $(1,0)$	Failure, valid $\overline{\bar{V}_{\text {out }}}$ pulse, $\overline{V_{\text {our }}}$ failure, cable failure, or partial sensor failure*
$(0,1)$ then $(0,0)$ or $(0,0)$ then $(0,1)$	Failure, valid $\overline{V_{\text {out }}}$ pulse, $V_{\text {our }}$ failure, cable failure, or partial sensor failure*
Always $(1,1)$	Short-circuited cables or failure in IC
Always $(0,0)$	Severed cables, failure in IC, or failure in \mathbf{Q}_{1} and \mathbf{Q}_{2}
*System remains functional in failure modes.	

Figure 1

NOTE: $Q_{1}, Q_{2}=$ FAIRCHILD FDV303N.
This circuit provides a fail-safe, low- to medium-speed variable-reluctance sensor.

design ideas

puts. IC_{1} 's outputs Y_{1} and Y_{2} can source as much as 10 mA . They alternately switch the logic-level, n-channel MOSFETs Q_{1} and Q_{2}, which in turn provide $\mathrm{V}_{\text {OUT }}$ and $\overline{\bar{V}_{\text {OUT }}}$. A low-dropout regulator, IC_{2}, provides the 5 V power source for
IC_{1}. Figure 2 illustrates low- (Figure 2a) and medium-speed (Figure 2b) operation for the sensor. For 5V-supply applications in which you can locate a microcontroller close to the sensor, you need only L_{1}, R_{1}, and IC_{1} for a direct interface.

For 3 V applications, replace IC_{1} with a MAX3096 IC.

Is this the best Design Idea in this issue? Vote at www.ednmag.com.

Figure 2

(b)
(a)

These waveforms represent operation at 4.9 Hz at 2.4 revolutions/sec (a) and 752.4 Hz at 376.2 revolutions/sec (b). Channel $\mathbf{1}$ is $\mathbf{V}_{\text {our }}$ Channel $\mathbf{2}$ is $\overline{\mathbf{V}_{\text {our }}}$, and Channel $\mathbf{3}$ is the voltage across \mathbf{R}_{1}.

Circuit efficiently switches bipolar LED

Spehro Pefhany, Trexon Inc, Toronto, ON, Canada

The circuit in Figure 1 represents one method to switch a bipolar, two-color LED using an
SPDT mechanical switch or relay. This circuit wastes power and does not work properly if the power-supply voltage is not substantially more than the sum of the LEDs' forward voltages. The circuit is, therefore, marginal, to the point of being unusable, with a 5 V supply and a red or green LED, which typically has a total forward voltage of 4 V . You can use a circuit resembling a flip-flop (Figure 2) that doesn't suffer the disadvantages of the circuit in Figure 1. It adds only one $\mathrm{V}_{\mathrm{CE}(\text { SAT })}$ voltage to the V_{F} of each LED, so plenty of headroom exists with a 5 V supply and a series resistor to control the LEDs' current. The circuit in Figure 2

Figure 1

costs less than a dime for the parts, which include three resistors and two inexpensive, general-purpose npn transistors, such as the 2 N 4401 or the C8050. In this

In this "flip-flop" switch, the only losses come from the $\mathrm{V}_{\mathrm{CE(Sat)}}$ and the base currents of the transistors.
example, D_{1} is red $\left(\mathrm{V}_{\mathrm{Fl}}=1.6 \mathrm{~V}\right)$, and D_{2} is green $\left(\mathrm{V}_{\mathrm{F} 2}=2.4 \mathrm{~V}\right)$. Based on D_{2}, the green LED, you can calculate that $\mathrm{R}_{\mathrm{S}}=(5 \mathrm{~V}-2.4 \mathrm{~V}-0.1 \mathrm{~V}) / 0.02 \mathrm{~A}=125 \Omega$ (use 130Ω for 19 mA).

As a result, using a single resistor, D_{1} has a current of 25 mA . If it is desirable to have equal or arbitrarily different currents, you can insert an additional resistor in one leg of the switch to increase the effective R_{S} for that switch position. The
base drive is a function of the V_{F} of the driven LED, so you can calculate the base resistors, using a forced beta of 20 , as follows:
$\mathrm{R}_{1}=20\left(\mathrm{~V}_{\mathrm{F} 1}-0.7 \mathrm{~V}\right) / \mathrm{I}_{\mathrm{LED} 1}=720 \Omega$ (use 750Ω).

$$
\mathrm{R}_{2}=20\left(\mathrm{~V}_{\mathrm{F} 2}-0.7 \mathrm{~V}\right) / \mathrm{I}_{\mathrm{LED} 2}=1.8 \mathrm{k} \Omega .
$$

The base drive reduces the actual LED current by 5%, which is visually negligible. As a bonus, the circuit does not introduce any switching glitches into the
power supply. The circuit requires only two connections, rendering it ideal for front-panel use. Because the 130Ω resistor is in series with the power supply, any part of the circuit beyond R_{S} can short to ground without causing damage.

Is this the best Design Idea in this issue? Vote at www.ednmag.com.

Circuit forms adjustable bipolar clamp

Pautasso Luciano, Nichelino, Italy

The easy way to clamp a signal to a given value is to use two zener diodes, connected back-toFigure 1 back. This method has several disadvantages. The accuracy of the clamping depends on the tolerance of the zener diodes, and the clamping is not adjustable, except by changing diodes. The circuit in Figure 1 is a bipolar clamper with a range of ± 1 to $\pm 10 \mathrm{~V}$, with the clamping level a function of the input $\mathrm{V}_{\text {CLAMP. }} . \mathrm{IC}_{1 \mathrm{~A}}, \mathrm{IC}_{1 B}$, and $\mathrm{IC}_{3 A}$ are unity-gain buffers. $\mathrm{IC}_{2 \mathrm{~A}}$ is a positive clamper, and $\mathrm{IC}_{2 \mathrm{~B}}$ is a negative clamper. Figure 2 shows the transfer function, with $V_{\text {CLAMP }}$ set at -5 V . You can change $\mathrm{V}_{\text {clamp }}$ over the range of -1 to -10 V and thereby change the clamping level. If $\mathrm{V}_{\text {IN }}$ is within $-\mathrm{V}_{\text {CLAMP }}$ to $+\mathrm{V}_{\text {CLAMP }}$, then $\mathrm{V}_{\text {OUt }}=\mathrm{V}_{\text {IN }}$. If $\mathrm{V}_{\text {IN }}$ exceeds $\mathrm{V}_{\text {CLamp }}$, then $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CLamp }}$. To explain how the circuit works, assume four cases, with four values of V_{IN}. Basically, the circuit works in two modes: the linear mode, in which diodes D_{1} and D_{2} are open switches, and the clamped mode, in which the diodes are closed switches. Table 1 gives results for the four cases. In Case A , the input is 7 V , $\mathrm{V}_{\text {CLAMP }}$ is $-5 \mathrm{~V}, \mathrm{D}_{1}$ conducts, and D_{2} is an

TABLE			
	1-RESULTS FOR CLAMPED		
	AND LINEAR MODES		
Case	$V_{\text {IN }}(V)$	$V_{\text {out }}(V)$	Mode
A	7	5	Clamped
B	3	3	Linear
C	-3	-3	Linear
D	-7	-5	Clamped

\qquad
Figure 2

This circuit provides adjustable clamping over the range of ± 1 to $\pm 10 \mathrm{~V}$.
open switch. The feedback loop around $\mathrm{IC}_{2 \mathrm{~A}}$ regulates the anode of D_{1} to 5 V and the output of $\mathrm{IC}_{2 \mathrm{~A}}$ to 4.4 V . In cases B and C , both diodes are open switches. In Case
D, D_{2} conducts, and D_{1} is an open switch.
Is this the best Design Idea in this issue? Vote at www.ednmag.com.

With $\mathrm{V}_{\text {cIAMP }}$ set at $\mathbf{- 5 V}$, the output clamps firmly at $\pm \mathbf{5 V}$.

Analog switch expands I ${ }^{2}$ C interface

Luca Vassalli, Maxim Integrated Products, Sunnyvale, CA

Perhaps the most effective way to gain board space and increase component density is to minimize wiring on the board. A widely used architecture that allows such miniaturization is the $\mathrm{I}^{2} \mathrm{C}$ bus. Comprising only a bidirectional data line, SDA, and a clock line, SCL, this bus requires no chip selects or other additional connections. Microcontrollers from Philips, Microchip, and other manufacturers include dedicated $\mathrm{I}^{2} \mathrm{C}$ interfaces, but you can also implement the interface in software. To complete this task, you associate a 7-bit address with each master or slave transceiver and factory- or pin-program the device with two to four address options. An increasing number of slaves now include the $\mathrm{I}^{2} \mathrm{C}$ interface, but some of their 128 address locations are reserved for special functions, so not all locations are available to a designer. Yet, two or more
devices could have the same address in some application. In Figure 1, analog switch IC_{1}, which is $\mathrm{I}^{2} \mathrm{C}$-controlled, connects auxiliary branches that contain devices with the same address to the main $\mathrm{I}^{2} \mathrm{C}$ bus. IC_{2} and IC_{3}, for example, have the same address but are located on different auxiliary buses.

The arrangement in Figure 1 prevents the master from addressing multiple slaves at the same time. If that situation occurs, the data becomes corrupted during a master-read protocol, and all slaves may not receive data during a masterwrite protocol. The analog switch accepts bidirectional signals as required for the SDA line. The switch has low on-state resistance, adds almost no leakage on the lines, and provides four selectable slave addresses. You simultaneously control the switches by using the simple SendByte protocol (address plus 8-bit com-
mand). You can switch the three auxiliary buses on the fly. Power-up sets the switches to soft mode, an off state with $12-\mathrm{msec}$ switching time. Then, a command byte of 0 b 11000000 sets the switches to hard mode (400-nsec switching time). Subsequent commands select the desired auxiliary bus. Command 0b1000011, for example, selects auxiliary bus 1 . The main $\mathrm{I}^{2} \mathrm{C}$ bus includes necessary pullup resistors, and the auxiliary buses include weaker pullups that ensure a high state when you deselect the bus. The circuit in Figure 1 allows you to add three times more devices on the bus. For a wider selection, you can replace the MAX4562 with a MAX4572, whose 14 switches allow you add as many as seven auxiliary buses.

Is this the best Design Idea in this issue? Vote at www.ednmag.com.

Figure 1

This $I^{2} \mathrm{C}$-controlled analog switch expands by three the number of devices connected to the bus.

ideas

Circuit safely applies power to ICs

Clayton Grantham, National Semiconductor, Tucson, AZ

SUPERVISORY CIRCUITS NORMALLY monitor a microprocessor's supply voltage, asserting reset

Figure 1

This LM3722 configuration connects only safe voltages to sensitive ICs.

TABLE 1-V SAFE HYSTERESIS OVER TEMPERATURE				
$\mathbf{V}_{\text {Saft }}$		$0^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$
On (V)	$V_{\text {IV }}$ increasing	3.2	3.2	3.2
Off (V)	$\mathrm{V}_{\text {IV }}$ increasing	6.1	5.5	4.9
On (V)	$V_{\text {IN }}$ decreasing	6	5.4	4.8
On (V)	$\mathrm{V}_{\text {IN }}$ decreasing	3.1	3.1	3.1

is Q_{2} 's pullup resistor; R_{5} limits Q_{3} 's base current. Using Q_{1} as an inexpensive 0.6 V switch, resistor dividers R_{1} and R_{2} set the overvoltage threshold according to the equation $V_{\mathrm{OV}}=\mathrm{V}_{\mathrm{BE1}}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) / \mathrm{R}_{2}$. An internal $22-\mathrm{k} \Omega$ resistor at IC,'s $\overline{\mathrm{MR}}$ input provides Q_{2} 's pullup. Typical $V_{\text {BE1 }}$ accuracy and temperature-coefficient errors are $\pm 10 \%$ and $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, respectively.

Adjustment of R_{2} for an exact overvoltage value nullifies $\mathrm{V}_{\text {BEI }}$'s accuracy error. Table 1 shows typical setpoints over temperature. If you need further error reduction, you could exchange Q_{2} for a comparator and voltage reference. For V_{IN} within the set limits, 3.1 to 5.5 V , the circuit draws only $16 \mu \mathrm{~A}$. A total of $5 \mu \mathrm{~A}$ flows into both the R_{1} and R_{4} nodes, and $6 \mu \mathrm{~A}$ flows into R_{3} 's node. R_{3} protects IC_{1} by providing current limiting of less than 6 mA) for high voltages at V_{IN}. The typical IC_{1} current of $6 \mu \mathrm{~A}$ through R_{3} increases the undervoltage setpoint by 24 mV .

Is this the best Design Idea in this issue? Vote at www.ednmag.com.

Simple circuit forms peak/clipping indicator

Steven Hageman, Agilent Technologies, Santa Rosa, CA

The simple peak detector in Figure $\mathbf{1}$ is the result of a need for a single5 V -supply, level/clipping indicator for a multimedia-PC sound system. The design is unique in that it detects both stereo channels on a single peak-hold capacitor. All the adjustments in the circuit
simultaneously apply to both left and right stereo inputs. The output is suitable for driving a bar-graph display or for ana-log-to-digital conversion and display with a microprocessor. The circuit operates as a dual positive-peak-detector circuit. The dual diode, D_{1}, serves to allow
positive peaks to pass while disconnecting the op amp from the hold capacitor, C_{1}, on negative peaks. Also, because the diodes have an OR connection, the circuit detects only the larger peak from the left or right stereo input. The values shown in Figure 1 are for standard 200-
mV -rms line-input levels, such as those you'd find on a PC's sound-card line input. Your personal prefer-
\square ence or exact needs might require other performance parameters, and you can easily adjust these values.

The gain for both stereo channels is equal to $1+R_{2} / R_{3}$. The circuit as shown has a gain of 5 . For a full-scale $200-\mathrm{mV}$ rms input, this gain produces an output of approximately 1.4 V . This value is convenient for this application, which uses three green LEDs, two yellow LEDs, and one red LED to show the relative peak levels of the stereo channels. Nominal, full-scale line input of 200 mV rms lights two of the green LEDs. "Attack time" is the time it takes the peak detector to respond to 69% of an input-signal peak, or one time constant. The time constant $\mathrm{R}_{1} \mathrm{C}_{1}$ sets the attack time. In this circuit, the attack time is 1 msec . The decay time is the time it takes the peak to decay to 31% of its original value, or one time constant. This time equals $\left(\mathrm{R}_{2}+\mathrm{R}_{3}\right) \mathrm{C}_{1}$ (assuming that R_{1} is negligibly small

Figure 1

This simple circuit provides peak detection and clipping indication for a PC's stereo channels.
compared with $\left.\mathrm{R}_{2}+\mathrm{R}_{3}\right)$. The decay time in this case is 250 msec , because that value produces a pleasing-looking bargraph display. Some applications may need different response rates; you can
easily obtain them by following the design equations above.

Is this the best Design Idea in this issue? Vote at www.ednmag.com.

