
Design and Implementation of a Path Finding
Robot Using Flood Fill Algorithm

Semuil Tjiharjadi and Erwin Setiawan

Computer Engineering Dept., Maranatha Christian University, Bandung, Indonesia
Email: semuiltj@gmail.com

Abstract Autonomous robot is a robot that can perform
certain work independently without the human help.
Autonomous of navigation is one of the capabilities of
autonomous robot to move from one point to another.
Implementation of Autonomous robot navigation to explore
an unknown environment, requires the robot to explore and
map the environment and seek the path to reach a certain
point. Path Finding Robot is a mobile robot which moves
using wheels with differential steering type. This path
finding robot is designed to solve a maze environment that
has a size of 5 x 5 cells and it is based on the flood-fill
algorithm. Detection of walls and opening in the maze were
done using ultrasonic range-finders. The robot was able to
learn the maze, find all possible routes and solve it using the
shortest one. This robot also use wall follower algorithms to
correct the position of the robot against the side wall maze,
so the robot can move straight. After several experiments,
the robot can explore and map of maze and find the shortest
path to destination point with a success rate of 70%.

Index Terms flood fill algorithm, path finding, maze, wall
folower algorithm

I. INTRODUCTION

Autonomous navigation is an important feature of
mobile robotics. It allows the robot to independently
move from a place to target location without a tele-
operator. There are several techniques and algorithms
have been developed for this purpose, each of them
having their own merits and shortcomings [1]-[5].

Path Finding robot is using a structured technique and
controlled implementation of autonomous navigation
which is sometimes preferable in studying specific aspect
of the problem [2]. This paper discusses an
implementation of a small size mobile robot designed to
solve a maze based on the flood-fill algorithm.

The path finding task is where robots try to solve a
maze in the least time possible and using the most
efficient way. A robot must navigate from a corner of a
maze to the center as quickly as possible. It knows where
the starting location is and where the target location is,
but it does not have any information about the obstacles
between the two. The maze is normally composed of 256
square cells, where the size each cell is about 18 cm ×
18cm. The cells are arranged to form a 16 row × 16
column maze. The starting location of the maze is on one
of the cells at its corners, and the target location is formed

Manuscript received July 1, 2015; revised March 14, 2016.

by four cells at the center of the maze. Only one cell is
opened for entrance. The requirements of maze walls and
support platform are provided in the IEEE standard.

II. LITERATURE REVIEW

A. Breadth First Search

Breadth First Search uses First In First Out queue. It is
used when space is not a problem and few solutions may
exist and at least one has shortest path. It works poorly
when all solutions have long path length or there is some
heuristic function exists. It has large space complexity
[6].

B. Depth First Search

Depth First Search uses Last In First out queue and are
recursive in algorithm. It is simple to implement. But
major problem with Depth First Search is it requires large
computing power, for small increase in map size, runtime
increases exponentially [6].

C. Heuristic Function

Heuristic function maps problem state descriptor to a
number which represents degree of desirability. Heuristic
function has different errors in different states. It plays
vital role in optimization problem [6].

D. Genetic Algorithm

Genetic algorithm is used to find approximate optimal
solution. It is inspired by evolutionary biology such as
inheritance, mutation, crossover and selection [7].
Advantages of this algorithm are it solves problem with
multiple solutions, it is very useful when input is very
large. Disadvantages of Genetic algorithm are certain
optimization problems cannot be solved due to poorly
known fitness function, it cannot assure constant
optimization response times, in Genetic algorithm the
entire population is improving, but this could not be true
for an individual within this population [6].

E. A* Algorithm

A*combines feature of uniform-cost search and
heuristic search. It is BFS in which cost associated with
each node is calculated using admissible heuristic [1].
For graph traversal, it follows path with lowest known
heuristic cost. The time complexity of this algorithm
depends on heuristic used. Since it is Breadth First
Search drawback of A* is large memory requirement
because entire open-list is to be saved [6].

F. Flood Fill Algorithm

Robot maze problems are an important field of
robotics and it is based on decision making algorithm [8].
It requires complete analysis of workspace or maze and
proper planning [9]. Flood fill algorithm and modified
flood fill are used widely for robot maze problem [10].
Flood fill algorithm assigns the value to each node which
is represents the distance of that node from centre [6].
The flood fill algorithm floods the maze when mouse
reaches new cell or node. Thus it requires high cost
updates [3]. These flooding are avoided in modified flood
fill [1].

III. HARDWARE DESIGN

Mobile robot base construction was made using
miniQ 2WD robot chassis. It was a product from
DFRobot as shown in Fig. 1. In the product consists of 1
robot chassis with a diameter of 122mm. 2 wheels with a
diameter of 42mm, 1 piece ball caster and 2 DC motors
which have been furnished by the gearbox as well as two
pieces of the DC motor bracket to pair on the chassis.

Figure 1. 12WD miniQ robot chassis.

Figure 2. Mobile robot from side view.

In this maze solving robot had 2 pieces rotary encoder.
Rotary encoder used is miniQ robot chassis encoder
which is also a product from DFRobot. Rotary encoder is
compatible with 2WD products miniQ robot chassis.
Rotary encoder attached to the DC motor to calculate the
rotation of the wheel as shown in Fig. 2. [11]

The whole hardware system of this mobile robot can
be seen in the block diagram at Fig. 3 and Fig. 4 shows
the main program. Mobile robot used three infrared
sensors to detect maze wall at right, left and front position.
Driver L293D controled the direction of rotation and
speed of a DC motor [12]. Rotary encoder is used to
calculate the rotation of the right and left wheels. Push
button was used to instruct the robot to start. The system

output would drive two DC motors that served as
actuators to move the right and left wheels, so that the
robot can move forward, spun to the right, turned to the
left, and rotates reverse [13]. ATmega324 microcontroller
serves to process the signal-sinyalinput, perform
processing algorithms, and generates output signals to
control a robot [9]. Information about all actions that had
been taken by the robot, would be displayed on the LCD
16 x 2 at Fig. 5.

Figure 3. Block diagram of mobile robot.

Figure 4. Flowchart of the main program

The maze designed for the robot to solve is of the size
of 5×5 cells as shown in Fig. 6. The actual maze
constructed, as shown in Fig. 7, has a physical size of
about 1.32 m2. The maze was designed so that it will
have two paths in order for it to be solved. One of the
paths is longer than the other. The robot (Fig. 2) must
decide which one of the paths is shorter and solve the
maze through that path.

IV. ALGORITHM

Choosing an algorithm for the maze robot is critical in
solving the maze. In this exercise, flood-fill algorithm
was chosen to solve the maze due to its balance in
efficiency and complexity.

Figure 5. Mobile robot from above view.

Figure 6. Design of the maze.

Figure 7. The maze.

Mapping the maze which has size of 5x5 cells is
accomplished by using two-dimensional memory array
with a size of 5x5. Artificial intelligence program
requires two memory arrays 5x5. The first memory array
is used to store information in each cell walls of the
maze. The second array of memory function is used to
store the cell value information in each cell. The position
of the robot in the program expressed by the coordinates

(row, column). The movement of the robot in the array is
done to position the robot as in Fig. 8.

If the robot moves one cell to the south, then the
coordinates of the line increases 1. If the robot moves one
cell to the West, then the coordinates of the column will
be reduced by 1. If the robot moves one cell to the North,
then the coordinates of the line will be reduced by 1. If
the robot move one cell to the East, the coordinates of the
column will increase 1. The initial conditions of the
robot, already has information about the initial position,
the initial orientation, the size of the maze, and the
existence of the outer walls of the maze.

Figure 8. Array of robot movement

There are four main steps in the algorithm; wall data
updates, cell value updates, the smallest neigbour cell
calculation, and moving to the smallest neighbour cell.

Figure 9. Flowchart for updating wall location at each cell

A. Wall Data Update

If robot decides where it wants to move to, it will
check if it is surrounded by any walls in any of the three
directions: front, right nad left. The robot will read the
distance of any obstacle at each direction and check if the
distance in each is more than 20 cm. The ones that exceed

shows by the flowchart in Fig. 9. Robot also needs to
know which direction it is facing. There are four
orientations for the robot: north, south, east or west, as
shown in Table I. Initial orientation was set at start and
the robot keeps tracking of any changes.

TABLE I. ROBOT DETECTION WHEN IT DETECT WALL.

Robot
Orientation

Detection Sensor
Right Front Left

South West wall South wall East wall
West North wall West wall South wall
North East wall North wall West wall
East South wall East wall North wall

B. Cell Value Update

Update value of the cell (restocked every cell with the
new value) serves to adjust the value in each cell of the
position of the wall that has been updated by the robot.
The value stored in the array 2 dimensions of memory
cell with size 5x5. Update the value of the cell is done by
using the flood fill algorithm.

Update cell values subroutine works by resetting the
values of the previous cell, then it will give a value of 255
in each cell, then fill in the values of these cells gradually,
start value (level) 0 to all the cells filled grades. The cells
that will be updated is the current_level array while
neighboring cells will be inserted into the next_level
array. After value fill in process is completed, then the
cells are in next_level array will be moved to an array of
fill in current_level to do next value. The update process
will be complete if the value of the cell array next_level
empty.

C. The Smallest Neigbour Cell Calculation
Subroutine specify the smallest neighboring cells

function to search for a neighboring cell which has the
smallest value. The smallest neighboring cell search is
done on a priority basis, so that if there is more than one
neighboring cell that has the smallest value, then the
selected cells are cells that have a higher priority.

Figure 10. Priority of Neighbour cell

Prioritization is based on the movement of the robot is
moving forward one cell has the first priority, move one
cell to the right has a second priority, move one cell to the
left has a third priority, and moving backward one cell

has the fourth priority. For example, if the robot were
facing the South, the South cells have a first priority, the
second priority of the West has a cell, the cell has a third
priority East and North cells have fourth priority as in Fig.
10. If the robot was facing the East, the East cells have a
first priority, South cells have second priority, the North
has a third priority cells, and cells West has fourth
priority.

D. Moving to the Smallest Neighbour Cell

Subroutine moves to the smallest neighboring cells
function to move the robot towards neighboring cells
which have the smallest value, after the robot finds the
neighboring cells. To perform movement to the cell, the
robot should know the location of the cell. Furthermore,
the robot will move to the cells by observing the
orientation. For example, if the South cell is the smallest
cell and orientation of the robot was facing west, then to
move to the position of the cell, the robot must be turning
left, then move forward as in Fig. 11. If the South cell is
the smallest cell and robot orientation was facing East,
then to move to the position of the cell, the robot must be
spinning right, then move forward.

Figure 11. Moving to smallest neighbour cell.

V. RESULTS AND DISCUSSION

In this experiments, Robot will learn to find the
shortest path from the starting cell (line 4, column 0) to
the destination cell (row 2, column 2) and then back again
to the initial cell. The initial orientation of the robot is
facing the North.

Figure 12. Simulation search path to cell (2,2)

The maze simulator program aims to facilitate the
observation on how the flood fill algorithm. Fig. 12 is a
view maze simulator program. Maze blue wall is a wall
that position known to the robot. While the maze walls
are colored orange wall position is not known by the
robot.

Robot will perform a search of the initial cell lines (4.0)
to the destination cell (2, 2). Flood fill algorithm

simulation results when a search of the cell lines (4, 0) to
the cell (2, 2) are shown in Fig. 12 to 22.

Figure 13. Simulation search path to cell (2,2)

Figure 14. Simulation search path to cell (2,2)

Figure 15. Simulation search path to cell (2,2)

Figure 16. Simulation search path to cell (2,2)

Figure 17. Simulation search path to cell (2,2)

Figure 18. Simulation search path to cell (2,2)

Figure 19. Simulation search path to cell (2,2)

Figure 20. Simulation search path to cell (2,2)

Figure 21. Simulation search path to cell (2,2)

Figure 22. Simulation search path to cell (2,2)

After robot run the search and update his wall data,
then it knows the shortest path to go to cell (2,2). It is
shown in Table II.

TABLE II. FIRST AND SECOND ROUTES OF ROBOT EXPERIMENT

 Routes Number of
steps

First
run

(4,0) (3,0) (2,0) (1,0) (2,0)
 (3,0) (3,1) (3,2) (3,3)

(2,3) (2,2)

10

Return
home

(2,2) (2,3) (3,3) (3,2)
(3,1) (3,0) (4,0)

6

Second
run

(4,0) (3,0) (3,1) (3,2) (3,3)
 (2,3) (2,2)

6

Wall map data will be updated when the robot go to

cells that have not been visited before. Flood fill
algorithm will update the value of the cell based on the
position of the wall that has been mapped out by the robot.

Robots always perform movement to neighboring cells
which have the smallest value. If there is more than one
neighboring cell that has the smallest value, then the cell
selection will be done on a priority basis. Go foward has
first priority, turn to the right has the second priority, turn
to the left has a third priority, and move backwards has a
fourth priority.

The value is changed in accordance with the position
of the wall that has been mapped out by the robot. Cell
values represent the cell distance to the destination cell.

VI. CONCLUSION

This design and implementation of the robot is a study
about the ability to equip a small mobile robot with the
ability to learn how to navigate in unknown environment
based on its own decisions. The flood-fill algorithm was
found to be an effective tool for maze-solving of a
moderate size. For the robot to make its decisions it relies
on inputs from several sensors, namely the ultrasonic
range sensors and wheel rotation decoders.

The robot has successfully able to map the maze in the
first, return home and second runs. In its second run it

reaches its target cell through the shortest route it has
mapped in the previous first run and return home.

maze solving capability in a bigger and more complex
maze. In order to improve the quality in wall detection,
better object sensor, such as a laser range finder, is
needed. It is much more costly but it have ability to scan
its surrounding at a wirde angle plane, so it will help a lot
in search ability at bigger and more complex maze.

REFERENCES

[1] B. S. Harapan, Pencarian Shortest Path Dinamik dengan
Algoritma Bellman Based Flood Fill dan Implementasinya pada
Robot Micromouse, Institut Teknologi Bandung, 2009.

[2] I. Elshamarka and B. S. S. Abu, Design and Implementation of a
Robot for Maze-Solving using Flood-Fill Algorithm, Universiti
Teknologi Petronas. 2012.

[3] I. Elshamarka and A. B. implementation of
a robot for maze-solving using flood-fill algorithm, International
Journal of Computer Applications, vol. 56, no. 5, pp. 8-13,
October 2012.

[4] A. Ansari, M. A. Sayyed, K. Ratlamwala,
optimized hybrid approach for path finding International
Journal in Foundations of Computer Science & Technology, vol. 5
no. 2, pp. 47-58, March 2015.

[5] K. Sharma and comprehensive and comparative
study of maze-solving techniques by implementing graph theory
IOSR Journal of Computer Engineering, vol. 17, no. 1, pp. 24-29,
2015.

[6] R. K. Sreekanth, intelligence algorithms IOSR
Journal of Computer Engineering, vol. 6, no. 3 September-
October 2012.

[7] C. David, Intermediate Robot Building, New York: Apress, 2010.
[8] M. Per. Design of an H-Bridge. [Online]. Available:

http://axotron.se/index_en.php?page=34
[9] M. A. Mazidi, S. Niami, and Sepehr Niami, The AVR

Microcontroller and Embedded System, New Jersey: Prentice Hall,
2011.

[10] B. Thomas, Embedded Robotics, Berlin: Springer, 2006.
[11] Rizqiawan, Arwindra. Sekilas Rotary Encoder. [Online].

Available: http://konversi.wordpress.com/ 2009/06/12/ sekilas-
rotary-encoder/

[12] S. Paul, Practical Electronics for Inventors, New York: McGraw-
Hill, 2000.

[13] G. W. Lucas. (June 2014). A Tutorial and Elementary Trajectory
Model for the Differential Steering System of Robot Wheel
Actuators. [Online]. Available: http://rossum.sourceforge.net/
papers/DiffSteer/

